Package: mixedCCA 1.6.2
mixedCCA: Sparse Canonical Correlation Analysis for High-Dimensional Mixed Data
Semi-parametric approach for sparse canonical correlation analysis which can handle mixed data types: continuous, binary and truncated continuous. Bridge functions are provided to connect Kendall's tau to latent correlation under the Gaussian copula model. The methods are described in Yoon, Carroll and Gaynanova (2020) <doi:10.1093/biomet/asaa007> and Yoon, Mueller and Gaynanova (2021) <doi:10.1080/10618600.2021.1882468>.
Authors:
mixedCCA_1.6.2.tar.gz
mixedCCA_1.6.2.zip(r-4.5)mixedCCA_1.6.2.zip(r-4.4)mixedCCA_1.6.2.zip(r-4.3)
mixedCCA_1.6.2.tgz(r-4.4-x86_64)mixedCCA_1.6.2.tgz(r-4.4-arm64)mixedCCA_1.6.2.tgz(r-4.3-x86_64)mixedCCA_1.6.2.tgz(r-4.3-arm64)
mixedCCA_1.6.2.tar.gz(r-4.5-noble)mixedCCA_1.6.2.tar.gz(r-4.4-noble)
mixedCCA_1.6.2.tgz(r-4.4-emscripten)mixedCCA_1.6.2.tgz(r-4.3-emscripten)
mixedCCA.pdf |mixedCCA.html✨
mixedCCA/json (API)
# Install 'mixedCCA' in R: |
install.packages('mixedCCA', repos = c('https://irinagain.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/irinagain/mixedcca/issues
Last updated 2 years agofrom:4c2b63f754. Checks:OK: 1 NOTE: 8. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 04 2024 |
R-4.5-win-x86_64 | NOTE | Nov 04 2024 |
R-4.5-linux-x86_64 | NOTE | Nov 04 2024 |
R-4.4-win-x86_64 | NOTE | Nov 04 2024 |
R-4.4-mac-x86_64 | NOTE | Nov 04 2024 |
R-4.4-mac-aarch64 | NOTE | Nov 04 2024 |
R-4.3-win-x86_64 | NOTE | Nov 04 2024 |
R-4.3-mac-x86_64 | NOTE | Nov 04 2024 |
R-4.3-mac-aarch64 | NOTE | Nov 04 2024 |
Exports:autocorblockcorestimateRestimateR_mixedfind_w12bicGenerateDataKendall_matrixKendallTaulambdaseq_generatemixedCCAmyrccstandardCCA
Dependencies:abindaskpassassertthatbase64encbslibcacachemcallrcliclustercodetoolscolorspacecpp11crosstalkcubaturecurldata.tabledendextenddigestdoFuturedoRNGdplyreggevaluatefansifarverfastmapfBasicsfMultivarfontawesomeforeachfsfuturefuture.applygclusgenericsgeometryggplot2globalsgluegridExtragssgtableheatmaplyhighrhtmltoolshtmlwidgetshttrirlbaisobanditeratorsjquerylibjsonliteknitrlabelinglatentcorlaterlatticelazyevallifecyclelinproglistenvlpSolvemagicmagrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimemnormtmunsellmvtnormnlmenumDerivopensslparallellypcaPPpermutepillarpkgconfigplotlyplyrprocessxpromisespspurrrqapquantregR6rappdirsRColorBrewerRcppRcppArmadilloRcppProgressregistryreshape2rlangrmarkdownrngtoolssassscalesseriationsnSparseMspatialstablediststringistringrsurvivalsystibbletidyrtidyselecttimeDatetimeSeriestinytexTSPutf8vctrsveganviridisviridisLitewebshotwithrxfunyaml
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Construct a correlation matrix | autocor blockcor CorrStructure |
Estimate latent correlation matrix | estimateR estimateR_mixed |
Internal mixedCCA function finding w1 and w2 given R1, R2 and R12 | find_w12bic |
Mixed type simulation data generator for sparse CCA | GenerateData |
Kendall's tau correlation | KendallTau Kendall_matrix |
Internal data-driven lambda sequence generating function. | lambdaseq_generate |
Sparse CCA for data of mixed types with BIC criterion | mixedCCA |
Internal RidgeCCA function | myrcc |
Internal standard CCA function. | standardCCA |